Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-19 15:06:04 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7ff90e7d12d0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-19 15:06:04 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-19 15:06:04 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-19 15:06:04 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
5 rud9l2XgEcat0000 None True Intestine result intestine investigate. None None notebook None None None None None 2024-10-19 15:06:08.628268+00:00 1
17 MBZvIPFvsigI0000 None True Efficiency IgG IgY Organ of Corti Liver lipocy... None None notebook None None None None None 2024-10-19 15:06:08.629016+00:00 1
39 zwHEkvWmrLnk0000 None True Semicircular Canals IgG3 Granulosa lutein cell... None None notebook None None None None None 2024-10-19 15:06:08.630366+00:00 1
40 2iAnCszEcrci0000 None True Igd intestine IgD research Granule cells IgG4. None None notebook None None None None None 2024-10-19 15:06:08.630427+00:00 1
44 uuFD6TJsOSNU0000 None True Visualize Zona fasciculata Tendons Schwann cel... None None notebook None None None None None 2024-10-19 15:06:08.630673+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
20 68cx3BQB1VOj0000 None True Granule Cells research efficiency study IgG Ig... None None notebook None None None None None 2024-10-19 15:06:08.629199+00:00 1
24 Bur2J0odSrUJ0000 None True Bone Marrow Bone marrow research IgE study Sem... None None notebook None None None None None 2024-10-19 15:06:08.629445+00:00 1
40 2iAnCszEcrci0000 None True Igd intestine IgD research Granule cells IgG4. None None notebook None None None None None 2024-10-19 15:06:08.630427+00:00 1
45 0opYI2wcnRjj0000 None True Organ Of Corti research IgG classify IgG3 rank... None None notebook None None None None None 2024-10-19 15:06:08.630734+00:00 1
46 YHysn5jxXAqz0000 None True Ige research IgG Oxyphil cell result. None None notebook None None None None None 2024-10-19 15:06:08.630795+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
20 68cx3BQB1VOj0000 None True Granule Cells research efficiency study IgG Ig... None None notebook None None None None None 2024-10-19 15:06:08.629199+00:00 1
24 Bur2J0odSrUJ0000 None True Bone Marrow Bone marrow research IgE study Sem... None None notebook None None None None None 2024-10-19 15:06:08.629445+00:00 1
40 2iAnCszEcrci0000 None True Igd intestine IgD research Granule cells IgG4. None None notebook None None None None None 2024-10-19 15:06:08.630427+00:00 1
45 0opYI2wcnRjj0000 None True Organ Of Corti research IgG classify IgG3 rank... None None notebook None None None None None 2024-10-19 15:06:08.630734+00:00 1
46 YHysn5jxXAqz0000 None True Ige research IgG Oxyphil cell result. None None notebook None None None None None 2024-10-19 15:06:08.630795+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
52 VaRLae6a72ut0000 None True Research Organ of Corti IgG. None None notebook None None None None None 2024-10-19 15:06:08.631161+00:00 1
91 xqG0JCG7T9Pk0000 None True Research Organ of Corti IgE classify Granule c... None None notebook None None None None None 2024-10-19 15:06:08.636635+00:00 1
142 TS4oUmo41bih0000 None True Research IgG3 Schwann cells intestinal Granule... None None notebook None None None None None 2024-10-19 15:06:08.642236+00:00 1
184 TfFDpPuap0yQ0000 None True Research IgD IgG1 intestinal IgG3. None None notebook None None None None None 2024-10-19 15:06:08.644768+00:00 1
297 lTSOJB90C2N50000 None True Research Liver lipocyte IgE IgG4. None None notebook None None None None None 2024-10-19 15:06:08.656761+00:00 1
321 n4pcKr43oU8K0000 None True Research Bone marrow IgG Uterus. None None notebook None None None None None 2024-10-19 15:06:08.658169+00:00 1
467 ZJTad2tsfIXl0000 None True Research IgG IgD candidate Granulosa lutein ce... None None notebook None None None None None 2024-10-19 15:06:08.674491+00:00 1
489 EVKYyD7dADOB0000 None True Research Uterus IgD Starburst amacrine cells. None None notebook None None None None None 2024-10-19 15:06:08.675826+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 K3UdSEBnVA64JkL20000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-19 15:06:06.869330+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 QjXEF3KFIfEvQW5V0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-19 15:06:06.997010+00:00 1
3 NR6Js0g9IM03Lsfx0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-19 15:06:07.004153+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries